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Outline 

• GSM signal 
• e.m. waves 
• resonant cavities 
• ETHZ apparatus 
• SAR analysis 
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e.m. spectrum 
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High frequency irradiation 

High frequency e.m. waves hardly penetrate inside the body, 
largely because of the water content of the tissues:  

I=I0e-d/L, L<λ/10 

λ  (m) L (m)
50 Hz 6000000 600000
1 kHz 300000 30000
1 MHz 300 30
1 GHz 0,3 0,03

frequency
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Specific Absorption Rate (SAR) 

The energy absorbed by the body is normalized to weight and time, and 
measured as SAR (Specific Absorption Rate), in units of: 
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High frequency irradiation: 
requirements 

•  GSM signal (i.e. flexible signal) 
•  Fit into commercial incubator 
•  Standard Petri dishes 
•  Monolayer cells (in suspension if with limited water content) 
•  Temperature rise negligible at average SAR=2W/kg 
•  No temperature hot spots 
•  Peak SAR>50 W/kg/Winput (note: 2 W/kg average = 150 W/kg peak in DTX 

mode) 
•  SAR nonuniformity < 30% 
•  SAR uncertainty < SAR nonuniformity 
•  Isolation between exposure and sham < 30dB 
•  Same exposure and sham conditions with continuous monitoring 
•  Self-detecting malfunctioning 
•  Stable power (feedback regulation of the output power of the RF generator) 
•  … 

resonant cavity 
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GSM transmission - 1800 MHz band 

•  bandwidth: 75 MHz 
•  number of 200 kHz channels: 374 
•  number of phones which can use the same channel: 8 (with Time 

Division Multiple Access - TMDA) 
•  pulse duration: 4.608 ms 
•  active time in one pulse: 576 µs (pulse modulation: 217 Hz) 
•  omitted pulses: 1 every 26 (additional pulse modulation: 8.34 Hz) 
•  power emission is adjusted to the strength of the signal: Adaptive 

Power Control (APC) 
•  power is switched off if not speaking: Discontinuous Transmission (DTX) 
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GSM 
signals 

Peak/average SAR = 8 

Peak/average SAR = 8.3 

Peak/average SAR = 69.3 
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GSM handsets 

•  maximum power allowed by law: 1 W 
•  fields at 2.2 cm from antenna: E=200 V/m, B=6 µT 
•  intensity at 2.2 cm from antenna: I=200 W/m2 (1/4 of the Sun’s 

radiation in a clear day) 
•  max SAR: 20-25 W/kg 

Kuster N., Bioelectromagnetics, 2005 
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GSM antennas 

microcell picocell standard cell 

•  standard cell typical power: 3 kW (directional, 120° sector) 
•  beam vertical aperture: 6°  
•  maximum intensity at 50 m from antenna: I=100 mW/m2 (1000 

times smaller than from handset)	
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Waveguide 

A wave guide is an empty tube with conductive 
walls into which an electromagnetic wave 
propagates. 
It is used when a high frequency signal (>1GHz) 
has to be transmitted for long distances without 
power losses. 
A waveguide can be imagined as an extension of 
the coaxial cable (e.g., TV cable). 
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Waveguide 
(infinite length box with conductive walls) 

Consequences of conductive walls: 

the electric field can only be perpendicular to 
the walls 

the magnetic field can only form close loops 
parallel to the walls and perpendicular to the 
electric field 

an e.m. wave travelling inside the cavity can 
be a superposition of several waves with 
different wavelength, phase and amplitude 

the e.m. wave travelling inside the cavity is 
“reflected” at the walls 
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Electric and Magnetic fields inside 
the waveguide 

(dominant mode) 
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Electric and Magnetic fields inside 
the waveguide 

(other modes) 
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How to get E=0 at b-walls 

two waves with the same frequency  
moving at an angle from each other 

position of  
b-walls (E=0) 

alternate position 
of b-walls (E=0) 

E field maxima 

E field minima 

wave 
direction 
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Reflection on the walls 

Reflection: A reflection changes the phase of the wave by 180° 

The incident wave has the 
E field at its minium; the 
reflected wave at its 
maximum 
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How the resonant wave is induced in 
the waveguide


from the signal  
generator  

antenna  

oscillating 
electric field 
(along the 
antenna) 

oscillating 
magnetic field 
(circulating around 
the antenna) 

antenna  
only the waves which hit the walls 
at the right angle can survive because the 
electric field must be zero at the walls  

both the magnetic and the electric field propagate in space 
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Resonant cavity 
(finite length box with conductive walls) 

effect of conductive walls: 

same as waveguide  
(but two more boundary conditions) 
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Rope fixed on both ends 

all waves (armonics) can be 
present at any time 

a perturbation travelling along 
the rope is a superposition of all 
armonics with different phases 
and amplitudes 

a perturbation travelling along 
the rope is “reflected” at the 
fixture 
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Resonant cavity: electric field 
configuration 

boundary 
conditions 
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E.M. frequency 

If the electric field is vertical (along b dimension): 
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ETHZ Apparatus 
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ETHZ Apparatus 

 a=129.6 mm 
 b=64.8 mm 
 l=425 mm 

na nb nl frequency (GHz)
1 0 1 1.209
2 0 1 2.340
3 0 1 3.488
1 0 2 1.355
2 0 2 2.418
3 0 2 3.541
1 0 3 1.568
2 0 3 2.544
3 0 3 3.628
1 0 4 1.824
2 0 4 2.710
3 0 4 3.746
1 0 5 2.109
2 0 5 2.909
3 0 5 3.892
1 0 6 2.412
2 0 6 3.135
3 0 6 4.064 Note: the resonant frequency is slightly reduced when the Petri 

dishes are inserted, due to the high conductivity of the medium. 
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Electric field


The E field 
oscillates with time 
with frequency ν, 
inverting the 
direction every half 
a cycle.  

t=0 

t=T/2= 
1/2ν 

t=T=
1/ν 
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Magnetic field 

Also the B field oscillates with time with 
frequency ν, inverting the direction every half a 
cycle. 

TOP view 
E-field: red and blue spots 
B-field: arrows 
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Field on Petri dishes 
Petri dishes 

Petri dishes are positioned where the magnetic field is larger (E is smaller). 
The magnetic field is tangent to the liquid surface. 
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Field on Petri dishes if na=2 
(resonance al 2.71 GHz) 

Petri dishes 
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Induced electric field 

Due to the large conductivity of the medium, a large oscillating electric field, 
circulating around the magnetic field, is induced in the liquid inside the Petri dish. 
The meniscus contributes with additional closed paths, further increasing the 
electric field. 

induced electric field path 

 meniscus 
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Signal generation 

PC = Personal Computer 
DL = Data Logger 
AM = Amplitude Modulation 
T = Temperature 
H = Magnetic field 
Ifan = Fan current 

Frequency 

Amplitude 
modulation 

Blank frame 
generation 

Sham/exposure 
selection 
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SAR calculation 

Notes: 

for V = 3 ml (h = 3.42 mm), the weight of the medium is: ρV = ρπr2h ≈ 30 g 
in order to get a SAR of 2 W/kg in 1 hour, an energy of about 22 J has to be delivered 
this implies an increase in temperature of ΔT = Energy/mcV ≈ 1.7 °C and therefore the need for ventilation 

the fields can be derived from the Poynting’s vector (energy/m2s): 
E ≈ 45 V/m, B=1.5 µT, H = B/µ0 ≈ 1.2 A/m 
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SAR depends on: 

•  value of the magnetic field 
•  quantity of medium 
•  position of the cells inside the medium 
•  conductivity of the medium 
•  height of the meniscus 

Most results from J. Schuderer et al., IEEE Transactions on Microwave Theory and Techniques, 2004, 
52:8:2057-2066. 
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Magnetic field, medium quantity 
and position of the cells 

SAR depends quadratically on the 
magnetic field (amplitude of the 
wave) and nearly quadratically on 
the volume of the medium. 
SAR at the bottom of the dish is 
largest. 

Liquid height = 3 mm 
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Conductivity 

The conductivity of different liquids may differ by 10-15%. 
σ (Bologna-DMEM) = 2.2 S/m 

SAR depends linearly on the conductivity of the medium.	
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Meniscus in different Petri dishes 

wetting procedure: 
fill with 1 ml more 
than take it away 

meniscus height	
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Meniscus relevance 

the relevance of the meniscus increases for small volumes	
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Uncertainty of SAR assessment 
(experimental) 
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SAR variability 
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SAR inhomogeneity: 
simulation results 

Side view Top view 
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SAR inhomogeneity 
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Measurement of the magnetic field 
Monopole antenna	
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Summary 

The dosimetric quantity has been parametrized w.r.t. the 
relevant parameters:	



Note:  the parameters of the fits are dependent on the 
geometry of the device.	
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Temperature control 

fans	


thermometers	

 The temperature stability is guaranteed by fans 

with variable speed. 

air flow	
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Temperature variation due to  
the EM field 

ON CYCLE:	



τ = heat convection time constant (180 s) 
cw=water specific heat 

OFF CYCLE:	
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Temperature variation 
cycle: 600 s on / 1200 s off 
SAR = 2 mW/g 
Total duration: 24 h 

1 cycle 

full experiment 
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Temperature inhomogeneity  
SAR = 1 W/kg 
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Low frequency irradiation 

Because of the high conductivity of the 
biologic material, in the case of low 
frequency irradiation only the magnetic 
field and the currents induced by its 
variation are relevant. 
The low frequency fields penetrate 
completely inside the body. 
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The Bologna apparatus 

Most important is the homogeneity 
of the field inside the Petri dishes 

Solenoidal field with four coils. 
All coils are doubled to allow for 
counter-rotating currents, i.e. 
sham exposure 


